Oberlin High School Teacher: Mr. S. Edwards <u>CAPE Physics- Unit One (1)</u>

Date	Module	Topics	Objectives
Date	Module Atomic and Nuclear Physics	Topics Particulate Nature of Electromagnetic Radiation	 Objectives Describe the phenomenon of photoelectric emissions Use the relationship E=hf to solve problems Discuss the shortcomings of classical physics to explain aspects of the photoelectric effect Explain how the photon theory better suits the emission of a photon Define work function, threshold frequency, cut-off wavelength and stopping potential. Use the relationship hf=@+1/2 mv² to solve problems Use the electron volt as a unit of energy Explain the production of X-rays by electron bombardment of a metal target Explain the origins of line ad continuous x-ray spectra Solve problems using the equation for the attenuation of x-rays in matter. Discuss the use of x-rays in radiotherapy and imaging in medicine. Explain the wave particle nature of matter
			electron diffraction for the wave nature of particles

November December	Atomic and Nuclear Physics		 Discuss interference and diffraction as evidence of the wave nature of e-m radiation Use the relation for the de Broglie wavelength to solve problems.
		Atomic Structure	 Describe the alpha scattering experiment and evidences that support the model of the atom Describe the Millikan's oil drop experiment and evidence for the quantization of charge.
		Atomic Mass	 Define mass defect and binding energy Calculate mass defect and binding energy in eV or Joules Use E=mc² to solve problems Use the atomic mass unit (u) as a unit of energy Represent graphically he relationship between binding energy per nucleon and nucleon number Compare the values of binding energy per nucleon when undergoing nuclear fission or fusion Interpret nuclear reactions
		Radioactivity	 Relate radioactivity to nuclear instability Discuss the spontaneous and random nature of nuclear decay Identify the origins and environmental hazards of background radiation. Describe experiments to distinguish between the three types of emissions from radioactive substances.

	• Write equations for radioactive
	decay
Atomic and	• Interpret equations for radioactive
Nuclear	decay
Physics	• Discuss the environmental hazards
(Cont'd)	of radioactive emissions
	• Discuss safety precautions for
	handling and disposal of
	radioactive material
	• Explain radioactive decay, decay
	constant and half life
	• Use the law of decay to solve
	problems
	• Use the relation T1/2
	=ln2/wavelength
	• Describe an experiment to
	determine the half-life of a
	radioactive isotope with a short
	half life
	• Discuss uses of radioisotopes as
	tracers for carbon dating and in
	 Describe the operation of simple
	Describe the operation of simple detectors
	ucicciois