OBERLIN HIGH SCHOOL
MATHEMATICS DEPARTMENT
GRADE 10
IDENTIFYING PARTS OF QUADRATIC GRAPHS
VOCABULARY

Word	Definition	Picture
Parabola	Shape of quadratic equation	
Vertex	Point where direction of graph changes (curve)	
Axis of Symmetry	Imaginary line where parabola can be folded in half	
Maximum	Highest point on graph	
Minimum	Lowest point on graph	

(a)

(b)

EXAMPLE 1:

X-Intercept(s): (1,0) and (3,0)
Y-Intercept: (0, -9)
Vertex: $(2,3)$
Point of Extremum (circle one): Maximumor Minimum: $y=3$
Axis of Symmetry: $x=2$
Root(s): $x=1, x=3$
Solution(s): $x=1, x=3$

EXAMPLE 2:

X-Intercept(s): $(1,0)$ and $(3,0)$
Y-Intercept: (0, 6)
Vertex: (2, -2)
Point of Extremum (circle one): Maximum or Minimum) $y=-2$
Axis of Symmetry: $x=2$
Root(s): $x=1, x=3$
Solution(s): $x=1, x=3$

EXAMPLE 3:

X-Intercept(s): None (doesn't touch x-axis)
Y-Intercept: (0, -2)
Vertex: (1, -1)
Point of Extremum (circle one): Maximum)or Minimum: $y=-1$
Axis of Symmetry: $x=1$
Root(s): None (doesn't touch x-axis)
Solution(s): None (doesn't touch x-axis)

ACTIVITY

Name \qquad

Date \qquad Class \qquad

Identify the key features of quadratic functions

QUESTION 1

X-Intercept(s) \qquad
Y-Intercept \qquad
Vertex \qquad
Point of Extremum (circle one):
Maximum or Minimum, $\mathrm{y}=$
Axis of Symmetry $x=$
Root(s) \qquad
Solution(s) \qquad

QUESTION 2

X-Intercept(s) \qquad
Y-Intercept \qquad
Vertex
Point of Extremum (circle one):
Maximum or Minimum, $y=$
Axis of Symmetry $\underline{x}=$
Root(s)
Solution(s)

QUESTION 3

X-Intercept(s)
Y-Intercept
\qquad
Vertex \qquad
Point of Extremum (circle one):
Maximum or Minimum, $y=$
Axis of Symmetry $\mathrm{X}=$
Root(s) \qquad
Solution(s) \qquad

