EXPRESSING A QUADRATIC FUNCTION IN ANOTHER FORM USING THE h AND k FORMULA

Example 1: a. Express $2x^2 + 8x - 6$ in the form $a(x + h)^2 + k$, where *a*, *h* and *k* are real numbers.

Solution (Using a Formula):
a) First identify the values of a, b and c of
$$2x^2 + 8x - 6$$
.
That is $a = 2$,
 $b = 8$
 $c = -6$
Second calculate the values of h and k

$$\mathbf{h} = \frac{b}{2a}$$
$$= \frac{8}{2(2)}$$
$$= \frac{8}{4}$$
$$= 2$$
$$\mathbf{k} = \frac{4ac - b^2}{4a}$$
$$= \frac{4(2)(-6) - 8^2}{4(2)}$$
$$= \frac{-48 - 64}{8}$$
$$= \frac{-112}{8}$$

= -14

$$a(x+h)^{2} + k$$

Therefore $2x^{2} + 8x - 6 = 2(x+2)^{2} - 14$.

- b. Using the answer from above, or otherwise, calculate
 - i. The minimum value of $2x^2 + 8x 6$ (Solution: y = -14)
 - ii. The value of x for which the minimum occurs (*Solution:* $x = -2 \leftarrow$ Notice that the sign is changed for the *h* value. In other words x = -h)
 - iii. The vertex or coordinates of the minimum point (Solution: (-2, -14))

Note: the vertex is (-h,k) using the formula in part a

iv. The value of the y- intercept (Solution: $y = -6 \leftarrow If x = 0$ in the equation

 $y = 2x^2 + 8x - 6$ then y = -6)

Example 2:

2a. Express $-2x^2 - 3x + 4$ in the form $a(x + h)^2 + k$, where a, h and k are real numbers.

Solution (Using a Formula): For $-2x^2 - 3x + 4$, *a* = -2, *b* = -3 and *c* = 4.

$$\mathbf{h} = \frac{b}{2a}$$
$$= \frac{-3}{2(-2)}$$
$$= \frac{-3}{-4}$$
$$= \frac{3}{4}$$

- 2b. Using the answer from above, or otherwise, calculate
 - v. The minimum value of $-2x^2 3x + 4$ (Solution: $y = \frac{41}{8}$)
 - vi. The value of x for which the minimum occurs (Solution: $x = -\frac{3}{4} \leftarrow Notice$ that the sign is changed for the h value. In other words x = -h)

vii. The vertex or coordinates of the minimum point (Solution: $(-\frac{3}{4}, \frac{41}{8})$ or $(-\frac{3}{4}, 5\frac{1}{8})$

Note: the vertex is (-h,k) using the formula in part a

viii. The <u>value</u> of the y- intercept (Solution: $y = 4 \leftarrow If x = 0$ in the equation

$$y = -2x^2 - 3x + 4$$
 then $y = 4$)

ACTIVITY

- a. Express $3x^2 8x + 2$ in the form $a(x + h)^2 + k$, where a, h and k are real numbers.
- b. Using the answer from above, or otherwise, calculate i. The minimum value of $3x^2 8x + 2$

 - ii. The value of *x* for which the minimum occurs
 - iii. The coordinates of the minimum point
 - iv. The value of the y- intercept