EXPRESSING A OUADRATIC FUNCTION IN ANOTHER FORM USING THE h AND k FORMULA

Example 1:

a. Express $2 x^{2}+8 x-6$ in the form $a(x+h)^{2}+k$, where a, h and k are real numbers.

Solution (Using a Formula):

a) First identify the values of a, b and c of $2 x^{2}+8 x-6$.

That is $a=2$,
$b=8$
$c=-6$

Second calculate the values of \boldsymbol{h} and \boldsymbol{k}

$$
\mathbf{h}=\frac{b}{2 a}
$$

$$
=\frac{8}{2(2)}
$$

$$
=\underline{8}
$$

$$
4
$$

$$
=2
$$

$$
\mathbf{k}=\frac{4 a c-b^{2}}{4 a}
$$

$$
=\frac{4(2)(-6)-8^{2}}{4(2)}
$$

$$
=-48-64
$$

$$
8
$$

$$
=\frac{-112}{8}
$$

$$
=-14
$$

$$
a(x+h)^{2}+k
$$

Therefore $2 x^{2}+8 x-6=2(x+2)^{2}-14$.
b. Using the answer from above, or otherwise, calculate
i. The minimum value of $2 x^{2}+8 x-6$ (Solution: $y=-14$)
ii. The value of x for which the minimum occurs (Solution: $x=-2 \leftarrow$ Notice that the sign is changed for the \boldsymbol{h} value. In other words $\boldsymbol{x}=-\boldsymbol{h}$)
iii. The vertex or coordinates of the minimum point (Solution: (-2,-14)

Note: the vertex is $(-h, k)$ using the formula in part a
iv. The value of the y - intercept (Solution: $y=-6 \leftarrow$ If $x=0$ in the equation

$$
\left.y=2 x^{2}+8 x-6 \text { then } y=-6\right)
$$

Example 2:

2a. Express $-2 x^{2}-3 x+4$ in the form $a(x+h)^{2}+k$, where a, h and k are real numbers.

Solution (Using a Formula):

For $-2 x^{2}-3 x+4$,
$\boldsymbol{a}=-2, \boldsymbol{b}=-3$ and $\boldsymbol{c}=4$.
$\mathbf{h}=\frac{b}{2 a}$
$=\frac{-3}{2(-2)}$
$=\frac{-3}{-4}$
$=\frac{3}{4}$

$$
\begin{aligned}
& \mathbf{k}=\frac{4 a c-b^{2}}{4 a} \\
&=\frac{4(-2)(4)-(-3)^{2}}{4(-2)} \\
&=\frac{-32-9}{-8} \\
&=\frac{-41}{-8}=\frac{41}{8} \text { or } 5^{1 / 1} 8 \\
& a(x+h)^{2}+k
\end{aligned}
$$

Therefore $-2 x^{2}-3 x+4=-2\left(x+\frac{3}{4}\right)^{2}+\frac{41}{8}$

2b. Using the answer from above, or otherwise, calculate
v. The minimum value of $-2 x^{2}-3 x+4$ (Solution: $y=\frac{41}{8}$)
vi. The value of x for which the minimum occurs (Solution: $x=-3 / 4 \leftarrow$ Notice that the sign is changed for the h value. In other words $\boldsymbol{x}=-\boldsymbol{h}$)
vii. The vertex or coordinates of the minimum point (Solution: $\left(-3 / 4, \frac{41}{8}\right)$ or $(-3 / 4,51 / 8)$ Note: the vertex is $(-h, k)$ using the formula in part a
viii. The value of the y - intercept (Solution: $y=4 \leftarrow$ If $x=0$ in the equation

$$
\left.y=-2 x^{2}-3 x+4 \text { then } y=4\right)
$$

ACTIVITY

a. Express $3 \boldsymbol{x}^{2}-\mathbf{8 x}+\mathbf{2}$ in the form $a(x+h)^{2}+k$, where a, h and k are real numbers.
b. Using the answer from above, or otherwise, calculate
i. The minimum value of $3 x^{2}-8 x+2$
ii. The value of x for which the minimum occurs
iii. The coordinates of the minimum point
iv. The value of the y - intercept

